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Abstract— It is very important to maintain supply 
reliability under the deregulated environment. The 
transient stability problem is one of the major concerns 
in studies of planning and operation of power systems. 
Although the equal-area criterion method is useful in 
determining the stability as a transient stability 
evaluation method, the method is only applicable to a 
one-machine system connected to an infinite bus or to a 
two machine system and the time domain simulation is 
the best available tool for allowing the use of detailed 
models and for providing reliable results. The main 
limitations of this approach involve a large computation 
time. This paper describes a method for estimating a 
normalized power system transient stability of a power 
system that is SMIB and three machines, nine bus 
systems. The energy function is derived using a Center 
of Inertia (COI) formulation. The critical energy is 
evaluated using corresponding energy function 
Therefore, the transient energy function (TEF) is 
constructed for large power system 

Index Terms—Critical clearing time, direct stability 
analysis, multi-machine system, transient energy 
function (TEF). 

I. INTRODUCTION 
An interconnected power system consists of 

generating units run by prime-movers (including 
turbine-governor and excitation control systems) plus 
transmission lines, loads, transformers, static reactive 
compensators, and high-voltage direct-current lines. 
The size of the interconnection varies depending on 
the system but the technical problems are the same. 
At the planning level, the planner would invariably 
study the stability of the system for a set of 
disturbances ranging from a three-phase-to-ground 
fault (whose probability of occurrence is rare) to 
single-phase faults, which constitute about 70 percent 
of the disturbances. The planner desires to determine 
if a potential fault has an adequate margin of safety 
without the system losing synchronism. A system is 
said to be synchronously stable (i.e., retain 
synchronism) for a given fault if the system variables 
settle down to some steady-state values as time 
approaches infinity after the fault is removed. These 
simulation studies are called transient stability 
studies. Transient stability is one of the important 
items which should be investigated in power system  

planning and its operation. Present day transient 
stability analyses are mainly performed by 
simulations. This method is very reliable method, but 
it does not suit calculations of many cases because it 
takes much computing time. As a substitute, direct 
method was proposed, and many papers have been 
reported for this method. It has reached to some level 
for a simple model in which generators are 
represented by constant voltages behind transient 
reactances.  

Some energy functions describe the system 
transient energy using a synchronous frame of 
reference [1]-[3].Others, as in the approach proposed 
here, has used a center of inertia (COI.) formulation 
[4]-[7]. Lyapunov’s or energy functions, is the 
method being implemented for assessment of online 
dynamic security. 

Transient stability analysis programs are 
MATLAB, PSCAD, ETAP, etc.. In these simulation 
programs, the behavior of a power system is 
evaluated to determine its stability and/or its 
operating limits, or eventually, in order to determine 
the need for additional facilities. Important decisions 
are made based only on the results of stability 
studies. It is therefore important to ensure that the 
results of stability studies are as timely and accurate 
as possible. Thus, it is important for a power system 
to remain in a state of operating equilibrium under 
normal operating conditions as well as during the 
presence of a disturbance. 

The main purpose of this paper is to 
investigate the transient stability of the SMIB and  
three machine nine bus power system with energy 
function method, when subjected to large 
disturbances . 

The transient energy consists of two 
components: kinetic and potential energy. In the post-
disturbance period, profiles of the kinetic energy 
(VKE), the potential energy (VPE) are obtained. These 
are used to develop a criterion for the degree of stress 
on a disturbed but stable machine, and to assess the 
extent of instability for an unstable machine. 

In practice, CCT can be obtained in one of 
two ways: by trial and error analysis of system post 
disturbance equations [1]-[2] or by integrating fault-
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on equations and checking the value of Lyapunov’s 
energy function until it reaches a previously 
determined critical level [3]. For the first approach, 
many integration processes are necessary. But, for the 
second approach we can evaluate the CCT in just one 
integration process.  

The IEEE 3-machine 9-bus [4] test systems 
are used to illustrate the proposed approach in the 
CCT evaluation.  

II. MATHEMATICAL FORMULATION 

In its simplest form the transition of a power 
system undergoing a disturbance is described by a set 
of three differential equations 
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X (t) is the vector of state variables of the system at 
time t. At t = 0, a fault occurs and the dynamics 
change from fI to fF. During 0 < t ≤ tcl, called the 
faulted period, the system is governed by fault- on 
dynamics fF.   fF indicates that there are no structural 
changes between t=0 and t = tcl. When the fault is 
cleared at t= tcl, we have the post fault dynamics f(X 
(t)).In the prefault state -∞ < t ≤ 0, the system would 
have settled down to a steady state so that X (0) =X0 
is known. Therefore we have the model as 
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 In reality the model is a set of differential – algebraic 
equations, i.e. for a dynamic system 
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Instead of finding the numerical solutions of DAE for 
a given time period the transient stability can be 
assessed directly through Lyapunov’s direct method 

of stability. Lyapunov’s stability theorem is stated as 
following 

( ) (8)X f X=  

If there exist a positive definite continuous function  
V (X), whose first partial derivative with respect to 
the state variable exist, then if the total derivative  
V(X) is negative semi definite then the system is said 
to be stable. The function V (X) is called as 
Lyapunov’s energy function. In [6], a method was 
proposed to estimate the transient stability of a 
system using Transient energy function. 
 

III. ENERGY FUNCTION FOR A SINGLE 
MACHINE INFINITE BUS SYSTEM 

The energy function is always constructed for the 
post fault system. Thus the post fault equations is 

2
max

2 sin (9)m e
dM P P
dt
δ δ= −  

 

Where 

max 1 2
e

E EP
X

=
 

E1 = Transient internal voltage 
E2 =   Infinite bus bar voltage 
X = Transfer reactance before the fault 
δ = Generator rotor angle deviation in radians 

  

Pm = mechanical power input 

The right hand side of Equation (9) can be expressed 
as the negative gradient of a potential energy function 

PEV  i.e. 

( )2

2
PEVdM

dt
δδ

δ
∂

= −
∂  (10) 

Where 

( ) max cosPE m eV P Pδ δ δ= − −
 (11) 

Multiplying Equation (10) by 
d
dt
δ

  on both sides and 

Integrating, we get 
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( )
21 0

2 PE
d dM V
dt dt

δ δ
   + =       (12) 

Since 
d
dt
δ ω=  , this implies 0dV

dt
=  where

 
( ) ( )21,

2 PEV M V Cδ ω ω δ= + +
(13) 

With C as a constant of integration. The constant C is 
adjusted so that ( ),0 0sV δ =  . Therefore, 

( )s
PEC V δ= −  . 

By substituting value of C in the Equation (3.5), then 
equation will be 

( ) ( ) ( )21,
2

s
PE PEV M V Vδ ω ω δ δ= + −

    (14) 
The post fault equilibrium point is given by 

1
maxsins m

e

P
P

δ −  
=  

      (15) 
The nearest unstable equilibrium point is given by

 u sδ π δ= − (16) 

Therefore, 

( ) max (cos cos )s s
PE eV Pδ δ δ= −

(17) 

Sub Equation (3.3) and Equation (3.9) in the 
Equation (3.6), then ( ),V δ ω  is given by 

( ) ( ) ( )2 max1, cos cos
2

s s
m eV M P Pδ ω ω δ δ δ δ= − − − −

 (18) 
In the case of a single machine system, crV  is 

determined as ( ),0u
crV V δ=  , i.e. 

( ) ( )max cos cosu s u s
cr m eV P Pδ δ δ δ= − − − −

    (19) 
Since u sδ π δ= −  , we get crV  as 

max( 2 ) 2 coss s
cr m eV P Pπ δ δ= − − +                (20) 

The energy function is given by 

( ) ( ) ( )2 max1, cos cos
2

s s
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 = ( , )s
KE PEV V δ δ+                                (21) 

Where 
21

2KEV ω=  is the transient kinetic energy 

( ) ( ) ( )max, cos coss s s
PE m eV P Pδ δ δ δ δ δ= − − − −

 is the potential energy. 
 The system is stable for t=tcl, if along the 
faulted trajectory ( ),cl cl cl

crV Vδ ω <  at t = tcl and 

the critical clearing time tcr is obtained when 

( ), crV Vδ ω =  on the faulted trajectory. The energy 
function is labelled as because this is the maximum 
energy that the system can have without becoming 
unstable. If the energy exceeds this critical energy 
then the system is unstable. Hence, the system 
stability can be assessed by computing the transient 
energy at critical clearing angle and checking if it less 
than that is 

( ) ( )
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IV. ENERGY FUNCTION FOR A MULTI 

MACHINE SYSTEM 

In a similar way the transient stability of multi-
machine can be assessed through transient energy 
function method [7]. Let the swing equation of an ith 
generator be given as 

1,....,
i i mi ei

i i

M P P

i n

ω

θ ω

= −

= =



 
    (22) 

If we eliminate all the terminal buses and load buses, 
except the generator internal nodes, then 

G red GI Y E=                                                       (23) 
Where, 
 Y Red is the reduced admittance matrix consisting self 
and transfer admittances of the internal generator 
nodes.  
The vector of internal voltages is represented as E G 
and the vector of generator currents as I G.  
 
The real power output of an ith generator is given as 

1
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             (25) 
Defining all the rotor angles and speed in terms of 
Centre of Inertia (COI) as 

0
1

1 n

i i
iT

M
M

δ δ
=

= ∑
      

0
1

1 n

i i
iT

M
M

ω ω
=

= ∑
                                           (26)

 

Where 
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We then transform the variables ,i iδ ω  to the COI 
variables as  

0
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It is easy to verify 
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Equation (25) can be represented in terms of COI 
variables as 
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Hence equation (27) can be written as the swing 
equation with Di=0 as 
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The right-hand side in Eq. (29) has different 
parameters (i.e., Gik and Bik values) in computing Pei 
and PCOI for faulted period (0 < t ≤ tcl) and the post-
fault period (t > tcl).  
The energy function is given by
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Where Ѳi and ωi are the variables from the faulted 
trajectory. 
Let the post fault system given by (30) have the 
stable equilibrium point at , 0sθ θ ω= = .Where, 

s
iθ   is the ith generator rotor angle in COI. The 

function fi (θ) is given as 

( ) 0 1.,.....i
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T

M
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                          (32) 
 
Summing the energy function defined in (31) for all 
the generators lead to   
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            (34)  

Where 2

1

1
2

n

i i
i

M ω
=
∑   is the change in rotor kinetic 

energy of all the generators in COI reference frame 
The rest of the terms are nothing but the potential 
energy of the system. 
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Fig. 1 Total energy versus the potential energy. The 
critical clearing time is the time at which the total 

energy equals the maximum potential energy 
Now compute the energy function given in 

(34) for a clearing angle and if the energy is less than 
the critical energy then the system is stable else the 
system is not stable. 

 
V. SIMULATION AND RESULTS 

Test System for SMIB system 
The validity of the proposed method is shown by 
Simulation studies. For the simulation studies, we use 
the single machine infinite bus system shown in Fig. 
2. 

 
Fig. 2 Small test system. 

Simulation Results 

Time Vs Rotor Angle 

 

Fig .3 Time Vs Rotor Angle at fault clearing time 
0.086 sec 

 
 

Fig 4 Time Vs Rotor Angle at fault clearing time 
0.087 sec, system is unstable after fault clearing time 

 
TABLE I 

TOTAL ENERGY COMPARISON 

Faulted 

bus 

Tcr 

sec 

Critical energy 

(Vcr) 

Total 

energy 

V(δ.ω) 

 
2 

 
0.086 

 
0.1651 

 
0.1651 

 From the table I, we see that the system 
is stable with tcr=0.086 sec and system becomes 
unstable after this tcr. Therefore the critical clearing 
time is 0.086 sec. this is proved when critical energy 
(Vcr) is equal to the total energy V (δ, ω) , therefore  
critical clearing time at this point is 0.086sec as Vcr 
is equal to V(δ,ω) 

TABLE II 
CCT CALCULATION 

Faulted 

bus 

Critical Clearing Time tcr(sec) 

Energy Comparison 
from [2] 

Numerical 
Method 

 
2 

 
0.086 

 

 
0.07 – 0.087 

 
 

In Table II, the proposed method is used to determine 
the CCT and compare the result with step-by-step 
integration as a benchmark and the results obtained 
by using methods of References [2] and [7]. 
 
Test System for Multi machines system 

The validity of the proposed method is 
shown by Simulation studies. For the simulation 
studies, we use the three machine nine bus system 
shown in Fig. 5. 
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Fig 5   Three-machine, nine-bus test system  

Simulation Result 

 

Fig 6 Deterministic test system voltages. 
 

 
 
Fig. 7 Total energy versus the potential energy. The 
critical clearing time is the time at which the total 

energy equals the maximum potential energy Critical 
Clearing Time = 0.2602 sec 

TABLE III 
DETERMINING CRITICAL CLEARING TIME 

USING PROPOSED METHOD 
Faulte
d 
Bus 

Remove
d Lines 

tcr (sec) 
(propose
d  
method) 

tcr (sec) 
(numeric
al 
method) 

Vcr=
V, 
then 
Syste
m is 
stable 

7 5,7 0.262 0.2 5.880 
 

 
The critical clearing time is the time at which the 
total energy equals the maximum potential energy. 
Critical Clearing Time = 0.2602 sec 
From Table III, the proposed method gives fairly 
consistent results compared to the numerical 
integration method. The critical clearing time from 
the proposed method is very close to the critical 
clearing of the numerical integration. 
 

V. CONCLUDING REMARKS 
 

This paper develops an approach to analyze the 
impact of random load and generation variations on 
the transient stability of a structure preserved power 
system. The well-known energy function method for 
power system transient stability is used as a basis to 
explore the power system stability through a 
Lyapunov’s stability analysis.  
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